PRELIMINARY GTMax TRAINING COURSE AGENDA - Initial Training -

St. Stefan October 16-18, 2001

Purpose: The Generation and Transmission Maximization (GTMax) model is a tool that optimizes the operations of electric utility resources within the physical and institutional constraints of the system. The purpose of this training course is to provide participants with a general understanding of the model's basic underlying principles and objectives. This training will consist of presentations, discussions, and model demonstrations.

Wednesday, October 16:

COURSE OPENING

- Welcome
- Introductions
- Agenda

DISTRIBUTION OF THE GTMax MODEL

INSTALLATION INSTRUCTIONS

INTRODUCTION TO THE GTMAX MODEL

- **GTMax Overview**
- **Basic Network Creation & Global Data Entry**

GTMax databases and cases

Geographical and functional network views

Viewing input data on the network diagram

Creating a node

Node input data forms

Linking nodes

System-level input data

Defining the year and selecting the year type (water/calendar)

Export data input

Import data input

Building a Simple Three-Node Network (Demonstration)

Create a database

Create a case

Spot market node

Two demand nodes

System input data

- Running GTMax and Viewing the Results

Model execution sequence

Selecting simulation weeks

Solver options

The run button

Run-notes

Viewing results on the network – hourly to annual

Hourly energy balance

Node results

System results

- Running the Three Node Network (Demonstration)

Run select

Substation node

Transmission lines

Transmission losses

Interruptible load

Unserved energy

Thursday, October 17:

HYDROPOWER PLANT SIMULATIONS

- Database and Scenario Management

Backing up databases

Restoring a database

Copying a database

Copying a case to another database

Copying flat files with Windows Explorer

Database conversion

- Hydropower Plant Node

Water-to-power conversion factor

Weekly energy (i.e., water) releases

Maximum and minimum flow rate restrictions

Wrapping function (boundary problem)

Spilled energy

Ramp rate restrictions

Daily restrictions

Ancillary services

- Adding a Hydropower Plant to the Network (Demonstration)

Pondage hydropower plant

Linking the plants to the network

Perform base case model simulation

- Hydropower Plant Operational Scenarios (Demonstration)

Restrict hourly ramp rates Lower the maximum flow rate Increase the minimum flow rate High water release High transaction costs

TEMPORAL DETAILS AND HYDRO CASCADES

- Entering the Details

Customers and demand

- Creating a Run-of-River Hydropower Plant (Demonstration)

Run-of-river Link the new plant to the system Perform simulations

Hydro Cascade

Reservoir elevation table
Maximum daily elevation change
Maximum 3-day change
Minimum & maximum reservoir operational level
Side flows

- Cascading Two Hydropower Plants (Demonstration)

Cascade link
Include side-flows
Restrict minimum and maximum elevation levels

Friday, October 18:

WORKING WITH LARGER NETWORKS

- Thermal Nodes and Firm Contracts

Thermal unit node Firm purchase node Firm sales node

- Modeling Electricity Markets

Economic scenario with minimal risk Market non-participation (unit commitment) Zonal prices Demand-Side Management (DSM) Open external markets Power wheeling New market player Bidding Strategy

- Thermal Nodes and Firm Contracts (Demonstration)

Add two thermal nodes to the network Additional substations Constrain the transmission system Add a firm purchase contract

- Defining Regions and Displaying Reports

Defining regions
Text reports
Summary sheet
Exporting simulation results

- Defining Regions and Regional Analysis (Demonstration)

Define two regions Run scenarios Analyzing production costs and revenues

- Transmission Link Details

Composite transfer capability Firm contracts Loss step function

- Transmission Link Detail (Demonstration)

Add a firm transmission contract Add Composite Transfer Capability (CTC) limits

- Final Model Discussions and Course Closing